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ABSTRACT

This document describes the support provided by the Goddard Space Flight
Center (GSFC) Attitude Determination and Control Section and its contractor
Computer Sciences Corporation during the 2 weeks immediately following the
launch of the Communications Technology Satellite (CTS) on January 17, 1976,
Results concerning attitude sensor performance, attitude and bias determination,
and attitude control system performance are presented. Included also are brief
descriptions of the spinning attitude sensors and attitude control system and
their final alignment data. A detailed discussion of attitude sensors, attitude
control system, and attitude determination and control procedures is given in
Reference 1. The reader is assumed to be familiar with the contents of that

document.
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SECTION 1 - OVERVIEW

This section reviews the major events of the Communications Technology
Satellite (CTS) mission which occurred during the time from lift-off to station
acquisition, described from the perspective of the Attitude Determination and

Control Section at Goddard Space Flight Center (GSFC).

CTS was launched from Cape Kennedy at 23 hours, 27 minutes, 54 seconds
Greenwich mean time (GMT) on January 17, 1976. Injection into the transfer
orbit occurred at 23 hours, 52 minutes on January 17, and a satisfactory trans-

fer orbit was achieved with the following parameters:

Parameter Description
Semimajor axis 24579.1 kilometers
Eccentricity 0.733086
Inclination 27.2013 degrees
Right ascension 288.005 degrees
of ascending mode
Argument of perigee 178.824 degrees
Mean anomaly 0.439642 degrees
Epoch date (GMT) January 17, 1976
Epoch time 23 hours, 52 minutes, 0 seconds
Spin axis right ascension 197.52 degrees
Spin axis declination ~22,53 degrees

The perigee height was 2. 38 kilometers below the nominal value but was within
the expected dispersion and was therefore not corrected. A chronology of the

main attitude support events from lift-off to station acquisition is as follows:

Date Time (GMT)
Event YY:MM:DD) (HH:MM)
Switch to Sun sensor-wW 76/01/18 02:20
Switch back to Sun sensor-E 76/01/18 02:27



T . Date Time (GMT)
) Event (YY:MM:DD) (HH:MM)
First attempt to reorient to 76/01/18 15:11
apogee motor firing attitude
(AMFA)L
Reorientation from injection 76/01/19 03:28

attitude (INJA) to system
verification attitude (SVA)

Reorientation from SVA to 76/01/19 23:08
AMFA

Trim for AMFA 76/01/20 08:4b
Apogee motor firing 76/01/20 20:41
Reorientation from AMFA to 76/01/20 22:40
drift orbit normal attitude

(DONA)

During the interval from January 20 to January 29, attitude was determined on
a daily basis in support of station acquisition orbit maneuvers. On January 30
— and 31, the despin maneuver from 60 revolutions per m'inute (rpm) to 1.5 rpm

was monitored through the attitude support system at GSFC.

1
At this time when latch valve 1 (LV1 in Figure 2-1) was opened, pressure of
the west tank fell to zero. Further attempts at reorientation were postponed
P until the problem was resolved.
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SECTION 2 - ATTITUDE SENSORS AND CONTROL SYSTEM

2.1 ATTITUDE SENSORS
The CTS is configured with the following attitude sensors:

) Two spinning Sun sensors (SSS-E, SSS-W)
] Two spinning Earth sensors (SES-E, SES-W)
° Five nonspinning Sun sensors

] Two nonspinning Earth sensors

The four ''spinning" sensors were used for attitude determination during the
phases of the mission supported by the attitude support system at GSFC, i.e.,
during the transfer and drift orbits in which the spacecraft was spinning at

60 rpm. The seven ''nonspinning" sensors are used by the closed loop attitude
control system which was activated after the spacecraft had been despun., The
data from the nonspinning Sun sensors was available during the transfer and drift
orbit phases and could have been used in case of failure of spinning Sun sensors.
A detailed description of the attitude sensors and onboard processing and telem-

etering of spinning sensor data is given in Reference 1.

2,1.1 Final Alignment Data of the Spinning Attitude Sensors

Il

The numerical data on the spinning attitude sensors and telemetry system is
given in Reference 1. The final prelaunch measured alignment values of the

spinning attitude sensor's azimuth and elevation are as follows:

Value

Parameter (degrees)
Azimuth angle of spinning Sun and Earth ’
sensor line of sight from spacecraft geometric
x-axis:
SSS-E 0.234
SSS-W 180.204
SES-E 0.246
SES-W 180,148
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Value

Parameter (degrees)

Angle of spinning Sun and Earth sensor
line of sight from spacecraft spin axis:

SSS-E 89.966
SS8-W 89.929
SES-E 84.964
SES-W 95.002

2.1.2 SES Leading Edge Output Anomaly

During the spacecraft prelaunch tests, it was found that the SES-W produced a
leading edge output even when the Earth stimulus was absent (Reference 2).
Detailed testing analysis indicated that when the sensor is scanning the Earth,
both leading and trailing edge pulses will occur, resulting in stable time inter-
vals. When the sensor is scanning only space, the trailing edge Earth interval
will be zero, and the leading edge Earth interval will be either zero or approxi-
mately equal to the Sun pulse interval, depending on the bias state in the leading
edge thresholding circuitry. This a.nomaloﬁs behavior wé.s observed only for
the SES-W during tests. However, after launch both Earth sensors were ob-
served to give spurious leading edge output when they were not scanning the
Earth. These spurious data were rejected by manually editing the raw telem-
etry data. When the Earth sensors were scanning the Earth, they performed

nominally.

2.1.3 Encoder Clock Rate Variations

During the spacecraft prelaunch tests, it was found that the encoder clock rate
varies with temperature from nominal (15,360 hertz) to 70 hertz low, i.e., to
14,270 hertz (References 3 and 4). The temperature of the spacecraft in spin-
ning phase was expected to be near the middle of the range (25 degrees Centi-
grade to 30 degrees Centigrade). Therefore, it was recommended that initially

a clock rate of 15,325 hertz be used. For greater accuracy during the mission,

the encoder clock rate was measured at Spacefhcrht Tracking and Data Network
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(STDN) stations at intervals and maritié.lly changed in the attitude support system.
The encoder clock rate during the spin-stabilized period of the mission varied
between 15,330 hertz and 15,303 hertz. The only significant effect due to error
in the encoder clock rate will be in the observed spin rate of the spacecraft.

The error in the computed rotation angles will be generally negligible because

in the computation of rotation angle from crossing interval, in the main term,
the encoder clock rate occurs in both the numerator and the denominator. Only
the portion of rotation angle to be attributed to fixed electronic time delay

(7.7 milliseconds) is affected by errors in the encoder clock rate.
2.2 ATTITUDE CONTROL SYSTEM

A schematic diagram of the spacecraft's reaction control system (RCS) is

shown in Figure 2-1. The RCS contains two "high-thrust' engines (HTEs) which
were used for attitude and orbit maneuvers during the portions of the mission
supported by GSFC. The RCS also includes 16 "low-thrust" engines (LTES)
which were emp}loyed after GSFC's control of the migsion had terminated. Dur-
ing the portions of the mission supported by GSFC, LTEs could be used to change
the spin rate of the spacecraft if the spin rate got outside the nominal 50-rpm-

to-75~rpm range, and LTEs P E, and W were available as backups for

g Py
HTESs. !

Of the two HTEs, called the axial high-thrust engine (Ax HTE) and the radial
high—thrust engine (Ra HTE), only the Ax HTE was employed by the Attitude
Control Support System (ACSS). For attitude reorientations the Ax HTE was
fired in a pulsed mode, i.e., one pulse was generated in each spin revolution
of the spacecraft. The LTEs were not used during the portions of the mission

supported by GSFC. Detailed description of the RCS is given in Reference 1.
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2,2.1 High-Thrust Engine Performance and Support

During a pulsed mode firing of the active HTE, one pulse is generated in each

spin revolution of the spacecraft.

Each pulse is initiated automatically, by the onboard electronics equipment, at
a selected time delay (td) after the Sun sighting reference pulse is generated
by the onboard spinning Sun sensor system. The same td value is used for
all pulses in any single train. This value is determined by the ACSS and trans-

mitted to the spacecraft.

The nominal width of the electronic firing signal which initiates and terminates
each pulse is 0.134 second. The number of pulses (n) required to be fired for a
given maneuver was computed by the ACSS, Details of the engine test perform-

ance parameters are given in Reference 1.

2.2.2 Final Alignment Data of the High-Thrust Engines

Figure 2-2 shows the nominal locations and orientations of the thrust vectors
(?R and -fA) of the radial and axial engines. The final prelaunch measured
alignment values, prelaunch numerical data on the attitude control system, and

basic data on the spacecraft mass properties are as follows:

’

Parameter Value

Azimuth angle of thrust vector from spacecraft
geometric x-axis:

Ax HTE (degrees) 355.275
Ra HTE (degrees) 7.914
P2 (degrees) 0.000
P4 (degrees) 0.000

Elevation above spin plane:

Ax HTE (degrees) + 82,652
Ra HTE (degrees) + 1.203
P2 (degrees) + 89.911
P4 (degrees) + 89.939
Apogee boost motor, fuel weight (pounds) 686,942
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Parameter Value

RCS fuel (hydrazine) weight (pounds) 54,737
RCS fuel tank pressure at loading (pounds per 354.50
square inch)

RCS fuel tank temperature at loading (degrees 72
Fahrenheit)

Total spacecraft weight at lift-off (pounds) 1490.506

Other prelaunch nominal numerical data is given in Reference 1.
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SECTION 3 - POSTLAUNCH ANALYSIS OF ATTITUDE SENSOR DATA

Data from both spinning Sun sensors and both spinning Earth sensors was of
excellent quality. Noise from the Sun sensor data was less than the granularity
of the hardware. Noise for the Earth sensor rotation angle data was typically
of the order of 0.02 degree (as given by Optical Aspect Attitude and Bias
Determination (OABIAS) solutions over large data spans). This noise is attrib-
uted to the granularity of the spacecraft clock (one clock pulse equals approxi-

mately 0.024 degree).
3.1 SPIN RATE

The spin rate of the spacecraft at constant attitudes remained constant over
large intervals, indicating absence of significant nutation. Figure 3-1 shows

the spin rate of the spacecraft over a period of 3 hours at injection attitude. The
observed systematic increase in spin rate in Figure 3-1 is attributed to a sys-
tematic decrease in the encoder clock rate during the data span as discussed in
Section 2.1.3. The decrease in encoder clock rate during the above-mentioned
data span was confirmed from the measured values at STDN stations. Occa-
sional fluctuations in spin rate between adjacent buckets (Figure 3-1) are attrib-

uted to noise and encoder clock granularity (approximately 0.024 degree at

60 rpm).
3.2 SUN ANGLE DATA

At all times during the mission, the prime spinning Sun sensor provided Sun
angle data that was accurate to within the granularity of this sensor (0.25 de-
gree). No flipping of this angle data between adjacent Sun buckets was observed
(see Figure 3-2). For the short period of time in which the redundant Sun sen-
sor (west) was active, the Sun angle data remained identical to that provided

by the prime spinning Sun sensor. The 7smooth transition of the Sun angle
between adjacent buckets indicated that nutation of the spacecraft was less than

one-eighth of a degree.
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3.3 ROTATION ANGLE DATA FROM SPINNING EARTH SENSORS

Although the specification for the units states that they shall meet their specified
accuracies for attitudes between 10,000 and 20,000 nautical miles, both spinning
Earth sensors performed adequately throughout all Earth coverage regions for
the transfer orbit. An anomaly shown by both east and west Earth sensors was
the random ficticious indication of a sky-to-Earth boundary crossing when no
Earth coverage was available. This erroneous data was rejected by manually
editing the raw telemetry data arrays. Figure 3-3 shows this effect occurring
for the west Earth sensor. Figures 3-3 and 3-4 show rotation angle data at first
apogee in the transfer orbit, and Figures 3-5 and 3-6 show similar data in the

drift orbit.

3.3.1 Pagoda Effect

This anomaly (Reference 1) affects the behavior of attitude data at small Earth
widths and is due to the electronic response of the infrared bolometer and its
associated electronics. Rotation angle data for apogee 1 (Figures 3-7 and 3-8)
clearly demonstrates that this distortion is present. In these figures solid lines
represent predicted rotation angles as calculated from the determined attitude,
and the symbol '+ represents the observed rotation angle. Using the analytical
results for CTS and previous satellite data (Reference 1), all rotation angle data
for Earth widths of less than 12 degrees were arbitrarily rejected. Data for
Earth widths larger than 12 degrees was considered to be unaffected by this

distortion and could be reliably used for attitude determination.

3.3.2 Perigee Data

Perigee data (perigees 6 and T) for the transfer orbit played an important role
in attitude determination. The wide range of geometrical conditions present

for perigee data make the data very sensitive to the fitting parameters. Con-
sequently the combination of perigee data with an equal section of apogee data

enabled a more accurate attitude determination result to be obtained. Perigee
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data prior to perigee 6 was present in too small a quantity to allow effective

use to be made of if.
3.4 SENSOR BIASES

3.4.1 Bias Determination

In determining the sensor biases for the CTS mission, prelaunch analysis

(Reference 1) had indicated the following conclusions:

o Injection attitude provides poor geometry data for accurate bias

determination to be possible.

] Apogee motor firing (AMF) is the principal attitude for bias deter-

mination activities prior to AMF,

e For AMF attitude the major problem for bias determination is the
high correlation of sensor mounting angle and Sun angle (caused by

the Sun vector, nadir vector, and attitude being nearly coplanar).

] - For AMF attitude in the drift orbit, a second Earth ellipse exists,
providing a greater variation in the available geometry and, there-

fore, improving the potential for bias determination.

(] The best geometry for bias determination on CTS occurs 20 degrees
from orbit normal, because it'is here that the largest variation in

the geometrical data is present.

° For the spacecraft at orbit normal, a full program of bias deter-

mination is no longer possible due to the redundancy of the data.

The general procedure for de’cermining biases for the CTS sensors involved
using prelaunch analysis findings as guidelines; thus, in order to eliminate the
pagoda effect, only data for Earth widths greater than 12 degrees was used in
solving for the biases. For AMF attitude, because of the correlation between

sensor mounting angle and Sun angle, one of these parameters was ''turned off"

3-11



during the bias processing. Similarly, in the drift orbit at orbit normal attitude,
a correlation between sensor mounting angle and Earth sensor triggering biases '
necessitated that a member of this pair of biases be turned off. For this geom-
etry a correlation also existed between the sensor azimuth biases and the in-
track orbit timing error, requiring that one of these parameters (usually the

latter) be turned off.

The subsystem used to determine the biases for the sensor hardware during the
CTS mission was OABIAS. Although OABIAS is capable of operation in both a
differential correction and a recursive mode, only the former mode was used
because prelaunch analysis had indicated that this mode was least sensitive to
a priori values of the state vector parameters. The capability of the new
OABIAS system to constrain the horizon-in value to be equal to the horizon-out
value for both the azimuth-level and triggering-level biases was used exten-
sively. The quality of the OABIAS solution was checked by using plots of re-
siduals from the OABIAS subsystem (Figure 3-9) and plots of predicted data

versus observed data from the PLOTOC subsystem (Figure 3-10).

Figure 3-9 shows an example of the residual for the midscan dihedral model
solution for the east Earth sensor for CTS mission data. The residual plot
represents the difference between the observed Earth midscan angle and the
predicted midscan angle for each frame of data proc‘essed, and it is the square
of this quantity which the OABIAS syéfem is attempting to minimize for each
iteration. This particular plot indicates evidence of a systematic error which
increases towards the end of the data pass. Sources of this error could be poor
geometry, pagoda effect, or certain biases being "turned off'" for this processing

rn.

In Figure 3-10 the full ellipse of "+ signs are the observed rotation angles for
the west Earth sensor where the lower curve represents the horizon~in and the

upper curve the horizon-out rotation angles. The partial ellipse of "+'" signs
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are the observed rotation a.rigles for the east Earth sensor which were not proc-
essed for this run. The pair of solid lines labeled ''5'" denote the predicted
rotation angles using the spinning sensor biases determined by the OABIAS
subsystem. The pair of solid lines labeled 6" were calculated using the final
prelaunch measured alignment data for the spinning attitude sensors (see Sec-

tion 2). The OABIAS solution (curve 5) clearly gives an excellent fit to the data.

3.4.2 Summary of Sensor Biases

The history of the spinning attitude sensor biases as determined for CTS are
given in Table 3-1. All biases were small and within the specified accuracy
of the alignment data for the sensors and the known unmodeled errors (pagoda

effect, Earth oblateness, Earth atmospheric height, orbit errors).
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SECTION 4 - ATTITUDE RESULTS

A number of discrete phases may be distinguished for the CTS mission when the

) spacecraft was not being maneuvered. During these periods large spans of data

were collected while the spacecraft's spin axis vector remained nearly invariant

in the geocentric inertial coordinate system. These phases were as follows:

° Transfer orbit
- Injection attitude
- System verification attitude
- Apogee motor firing attitude (prior to trim)

- Apogee motor firing attitude (following trim)

o Drift orbit
- Post-apogee motor firing attitude
- Drift orbit normal attitude (prior to first orbit maneuver)
- Drift orbit normal attitude (prior to second orbit maneuver)
- Drift orbit nérmalggtritude (prior to third orbit maneuver)
- Drift orbit normal attitude (prior to fourth orbit maneuver)
- Drift orbit normal attitude (prior to fifth (final) orbit maneuver)

- Drift orbit normal attitude (after fifth (final) orbit maneuver)

The attitude history and corresponding orbit information for these discrete
phases are listed in Table 4-1 and Table 4-2, respectively. Successive orbit
trim maneuvers following the second orbit maneuver had little effect on the

spacecraft's attitude.

An upper limit on the arc-length uncertainty for the attitude results for CTS
was conservatively fixed at 0.5 degree. This value was supported by arc-
length uncertainty results determined by the Optical Aspect Attitude Determina-
tion System (OASYS) (using a priori alignment data) and by the sensor biases

determined by OABIAS being no larger than approximately one-third degree.
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Low residuals (0.15 degree) from OABIAS also indicated that the observed data

had been satisfactorily modeled.
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SECTION 5 - CONTROL SYSTEM PERFORMANCE

The Ax HTE was used to perform all attitude reorientations, and it performed
well, Through the effective use of the control monitor subsystem, all attitude
reorientation maneuvers were completed within 1 degree of the desired attitude;
as a result, only a 1-degree trim maneuver was needed prior to AMF, and no
trim maneuver was required to achieve DONA. In the subsections which follow,

each attitude maneuver will be discussed briefly.

In all the plots presented in this section, the solid line represents the predicted
variation during the attitude maneuver as computed by the CTS maneuver con-
trol program (CTSMAN), and the symbol "+'" represents the observed value

during the actual maneuver.

5.1 INJECTION ATTITUDE (INJA) TO SYSTEM VERIFICATION ATTITUDE (SVA)

Figures 5-1 and 5-2 show the observed maneuver from INJA to SVA. The
predicted plot is for the full maneuvg}f;@pm INJA to AMFA, The first short
segment of the predicted plot is for INJA to SVA and was computed for a firing
of 90 pulses of the Ax HTE. In the actual maneuver, 93 pulses were fired;
therefore, the observed trajectory extends beyond the predicted trajectory.

Otherwise, the observed maneuver was very close to the predicted trajectory.
5.2 SVA TO AMFA

The maneuver from SVA to AMFA was planned to be performed in two segments
in order to have the spinning Earth sensor coverage available throughout the
maneuver. In Figures 5-3 through 5-11, the shorter segment of the predicted
maneuver is from SVA to an intermediate attitude (INTA), and the longer seg-

ment is from INTA to AMFA.

5.2.1 SVA to INTA

Figures 5-3 through 5-5 show the observed maneuver from SVA to INTA. The

observed trajectory is slightly off the predicted trajectory. The firing angle
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Figure 5-5. Spin Rate Versus Time Plot for Predicted Maneuver From
SVA to AMFA and Observed Maneuver From SVA to INTA
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error computed by the control monitor is approximately +1.5 degrees. For
this segment, 690 pulses of the Ax HTE were fired. The total rhumb line arc
length traveled is about 8 percent smaller than that predicted. In Figure 5-5, it
is seen that the observed spin rates are very close to the predicted values. The
slightly larger observed spin rate at INTA is attributed to the fact that the total

rhumb line arc length traveled is about 8 percent shorter than that predicted.

5.2.2 INTA to AMFA

Figures 5-6 through 5-11 show the progress of observed maneuver from INTA
to AMFA. The maneuver from INTA to AMFA was stopped four times when
nearing AMFA, and the firing angle was changed twice in order to achieve
AMFTFA closely. Figure 5-6 shows the observed maneuver up to the first stop
after INTA. From INTA to the first stop, 775 pulses of the Ax HTE were fired.
The firing angle was changed at the first stop. Figure 5-7 includes the observed
maneuver from the first stop to the third stop. In this segment a total of

186 pulses of the Ax HTE were fired in 2 groups of 93 with a short pause at

the second stop. The firing angle was changed a second time at the third stop.
Figure 5-8 includes the observed maneuver from the third stop to AMFA. In
this segment 62 pulses of the Ax HTE were fired in 2 groups of 31 with a short

pause at the fourth stop.

Figures 5-9 and 5-10 show the variation of the Sun angle and the spin rate,
respectively, for the full maneuver. In these plots discontinuities followed by
lines of constant Sun angle or spin rate indicate stops. Figure 5-11 is the plot
of right ascension versus declination for the full maneuver. A total of 1023

pulses of the Ax HTE were fired for the maneuver from INTA to AMFA.
5.3 TRIM MANEUVER TO AMFA

The accurate attitude determination using a long data span after maneuver to

AMTFA showed that the attitude achieved was 1 degree short of the desired
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AMTFA. Therefore, a trim maneuver to AMFA by firing 12 pulses of the Ax HTE

was performed, and the required AMFA was achieved.
5.4 AMFA TO DONA

Figures 5-12 through 5-15 show the progress of observed maneuver from
AMPFA to DONA. This maneuver was intitiated without the spinning Earth
sensor coverage, and therefore initially the Sun angle variation (Figure 5-12)
was used to monitor the maneuver. About halfway through the maneuver, the
Earth was picked up by the SES-W, and it was observed (Figure 5-13) that the
maneuver was going slightly off the planned trajectory. It was decided to con-
tinue the maneuver until the attitude fell on the second predicted segment. This
was achieved (Figure 5-14) after 434 pulses of the Ax HTE had been fired. At
this point the firing angle was changed, and 62 pulses of the AX HTE were fired.
It was observed that the maneuver was slightly off the planned trajectory (Fig-
ure 5-15); therefore the firing angle was changed a second time, 21 more
pulses of the Ax HTE were fired, and DONA (Figure 5-13) was achieved. Ac-
curate attitude determination using a long data épan showed that the attitude
achieved was within 1 degree of the DONA, and therefore a trim maneuver was

not needed.
5.5 SUMMARY OF ATTITUDE CONTROL SYSTEM PERFORMANCE

Table 5-1 presents a history of commands executed for the attitude maneuvers
and the attitudes achieved at the end of the maneuvers., The observed torque
per pulse of the Ax HTE was approximately 8 percent lower than that predicted,
and the observed rhumb angles of maneuvers were approximately 1.5 degrees
larger than those predicted. After termination of the maneuvers, the spin rate
and the Sun angle were observed to be fluctuating for a few minutes. The ampli-
tude of fluctuation was small; it is attributed to small nutation induced due to
attitude maneuvers and is consistent with the prelaunch analysis. The stabiliza-
tion of the spin rate and the Sun angle in a few minutes indicates that the passive

nutation damper was performing well.
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SECTION 6 - CONCLUSIONS

The major conclusions of the observations and analysis during and after the

launch are summarized as follows:

Spinning attitude sensors performed well. Alignment was good;

as a result, only small biases were observed.

The available perigee data was utilized effectively; as a result,
the AMFA was determined to high precision, and extremely close
agreement between the desired and observed drift orbit after the

apogee motor firing was realized.

The AXx HTE performed well. Alignment was good; as a result,
the observed spin rate variation during attitude maneuvers was

very close to the predicted variation.

Errors in the Ax HTE calibration data were small. The observed
rhumb angles of attitude maneuvers were approximately 1.5 de-
grees larger than predictions, and the observed precession per

pulse was approximately 8 percent smaller than that predicted.

Throughout all the attitude maneuvers, the spacecraft was kept
within all the constraints and did not overshoot the target attitude.
A]ll attitude maneuvers were completed within 1 degree of the de-

sired attitude.

The attitude support software performed flawlessly throughout the

mission.

All of the attitude determination and control support requirements
were satisfied throughout the National Aeronautics and Space

Administration (NASA) phase of the mission,
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